
Converting a CFG to Chomsky Normal FormJP
! Prerequisite knowledge:

Context-Free Languages
Context-Free Grammars
JFLAP Tutorial

In this unit, we will look at the process of converting a Context Free Grammar into an equivalent
grammar in Chomsky Normal Form.

With no restrictions on the form of the right-hand sides of CFG grammar rules, some grammars can be
hard to use; that is, some tasks and algorithms can be difficult to carry out or inefficient. For example, if
the grammar has "-productions, brute-force parsing can be slow. Since there exist multiple equivalent
CFG expressions of a given language, we consider the potential to rewrite the grammar into a form that
has more desirable properties. A grammar is said to be in a normal form if it cannot be rewritten any
further under the specified rules of transformation.

Given a CFG grammar G, we are looking for an alternative CFG F that is a transformed version of G
(produces the same language) but for which some tasks of interest are easier to perform. One example of
a useful CFG normal form is Greibach Normal Form (GNF) established by Sheila Greibach. A CFG is in
GNF if the right-hand sides of all production rules start with a terminal symbol, optionally followed by
some variables, and the only permissible "-production is from the start symbol. That is, all rules have the
form A ! aß or S ! " where A � Variables (nonterminals), a � Terminals, ß � Variables*, and S is
the start symbol. In every derivation produced by a GNF grammar exactly one terminal is generated for
each rule application. A grammar in GNF is easily converted to a PDA with no "-transitions, which
are guaranteed to halt.

We will now consider another CFG normal form, namely, Chomsky Normal Form.

Description of Chomsky Normal Form (CNF)
A CFG is said to be in Chomsky Normal Form (established by Noam Chomsky) if all production rules
have the form A ! BC , A ! a, or S ! " where A, B, C � Variables (nonterminals), a � Terminals,
and S is the start symbol.

Consider the following context-free grammar. (See: CFG2CNF.jff)

Variables = { P, Q, S, T, U }
Terminals = { 0, 1 }
Start Symbol = S

S # TT
S # U
T # 0T
T # T0
T # 1
U # 0U00
U # 1
Q # "
P # QU

This CFG is not in CNF because it violates several of the conditions. For example, Q # " is invalid
because Q is not the start symbol. S # U is invalid because there is only one variable on the right-hand
side.

Identify all of the violations of CNF in this grammar.

Enter this grammar into JFLAP and verify that it is context free.

Example of the CFG�CNF Conversion Process
One approach to converting a CFG into an equivalent grammar in CNF is to successively replace objects
in the CFG to get closer to the requirements for CNF while maintaining the integrity of the language
recognized.

The following sequence follows a path through the conversion process as provided by JFLAP.

Begin by selecting Convert > Transform Grammar.

The first step in this transformation involves the removal of "-productions (Lambda removal).

The conversion process begins by choosing Do Step.

Select the rule that produces lambda and select Delete.

An additional rule is necessary to account for the lambda removal.

Select Do Step.

No additional Lambda removal is necessary.

Select Proceed. JFLAP will move into "Unit Removal" mode and provide a state-transition visualization.

Select Do Step twice to follow along with the unit-removal transformation.

Unit removal is complete. Select Proceed to begin removing useless productions.

Select Do Step three times to follow along with the process of identifying and eliminating useless
variables and productions.

All useless variables and products have been removed. Select Proceed to enter the final phase, Chomsky
Converter.

Note that 4 of the productions must be converted.

Which productions require conversion?

Select one of those production rules and choose Convert Selected.

Note that a single step in the conversion process does not necessarily reduce the number of productions
that need to be converted. Select What's Left? to highlight rules that need to be converted.

Continue selecting and converting productions until all appropriate productions have been converted.

Finally, select Export to create a clean version of the new CNF grammar.

Verify that every production is in the appropriate form for a CNF grammar.

Use Test > Test for Grammar Type as additional verification.

Questions to Think About

1. How can you convince yourself that this CNF grammar is equivalent to the original CFG?
Answer: The steps of conversion constitute a proof.

2. Convert the CNF grammar to a PDA. Run test inputs that demonstrate the same behavior of the
PDA with the original grammar.

