NFA - Exercise
Problem:

Construct an NFA that accepts the language {ab, abc} *. Thisis the set of strings where ab
and abc may be repeated. Example strings include abcab, ababcab, abcabcabc, and the empty
string.

Solution:

We start by analyzing the type of strings accepted by this language. Each substring may be either an ab
or an abc. The substring may be repeated zero or more times. Valid strings include abab, abcababc,
and ababcabcabc (respectively, ab ab, abc ab abc, ab abc abc abc, the spaces showing the substrings).

Since the beginning of each substring is an ab, we start an NFA with states accepting the ab from either
substring.

To this partial NFA, we add a transition to accept the c in the abc substring, or an empty string. We also
want a loop back to the initial state so that the star-closure may iterate.

Lastly, we make the initial state a final state to allow it to accept A and to end anytime a substring is
parsed. Note that an NFA does not have to have trap states nor an outgoing edge for each alphabet
symbol out of every state.

Test the NFA with sample strings.

JFLAP v8.O(NFA_(ab_abd)starjflap) a ‘. s » E=E)
File Input Help X
Automaton Editor | Multiple Run |

[Table Text Size _

Input l Result

labab Accept -]

labcababec Accept

lababcabcabc Accept J

A Accept

labb Reject]

lcba Reject _
’ Load Inputs H u Clear ” Enter A H View Trace ’

File Input Help

{

i [Table Text Size

Input | Result

0111001 0011000
(0001001110 0000000110
[111010110 011000010

7 ‘ Load Inputs " || Clear " Enter)\" View Tracel

Lastly, we explore the non-determinism attribute of the finite automaton further. With the NFA
loaded on JFLAP, click Input > Step by State. Enter ab as the input string. Click Step for each of the

input symbols and watch JFLAP simulate the moves. Note that after it reads the “b”, it may stay at
gl and reject the string or transition to q0 to accept.

